
Memory Centric Systems for AI Final Project
Report: Play with DRAMsim3

2020314087 Sungmin Ryu
School of Electrical and Electronic Engineering

Yonsei University, Seoul, Korea

Abstract—DRAMsim3 [2] is a cycle-accurate DRAM simulator,
which faithfully models almost all aspects of modern DRAM,
including the timings that we have covered, power consumption,
etc. In order to understand how DRAMsim3 works, I first made
a trace-based memory controller. With the memory controller, I
tested the ResNet-18 traces changing scheduling methods of the
simulator. Next, I built a timing memory controller to simulate
simple memory timing test. Finally, I connected DRAMsim2 and
gem5 [1] and then simulated AlexNet first convolutional layer.
With the simulation, I tested loop-unrolling method which can
reduce loop overhead. This report describes how to use the trace-
based and timing memory controller, difference between FCFS
and FR-FCFS scheduling, and some results of simulation.

I. INTRODUCTION

This report consists of three parts. First, I explain how to
use DRAMsim3 as a trace-based simulator and timing-based
simulator respectively and show the results of the ResNet-18
trace simulation, in Section II. Second, I compare FCFS and
FR-FCFS with the trace-based memory controller, in Section
III. In the last section, I describe the loop-unrolling method
and test the method with gem5-DRAMsim2.

A. Overview of Project Sources

1 .
2 |-ext // ext includes DRAMsim3
3 |--configuration.cc // for my convenience
4 |--DRAMsim3 // DRAMsim3
5 |--libdramsim3.so // DRAMsim3 shared library
6 |--Makefile // DRAMsim3 Makefile
7 |--src // DRAMsim3 source
8 |--... // DRAMsim3 other directories and files
9 |-Makefile // My project Makefile

10 |-src // My project source
11 |--main.cc // My project main
12 |--mem_ctrler.cc // My project memory controller source
13 |--mem_ctrler.h // My project memory controller header
14 |-traces // ResNet-18 traces
15 |--trace1.txt
16 |--trace2.txt
17 |--trace3.txt
18 |--trace4.txt
19 |--trace5.txt
20 |--trace6.txt
21 |--trace7.txt
22 |--trace8.txt

- Source Tree -

Before we start, check the source tree above which con-
tains main files and directories of this project. DRAMsim3
is located in ’ext’ and there are three main source files in
’src’ directory: mem ctrler.h, mem ctrler.cc, and main.cc. The
mem ctrler.h and mem ctrler.cc have some memory controller
classes and functions respectively. In the main.cc, I can call
the memory controllers and simulate trace-based simulation.
All sources are available on my github(https://github.com/
WheatBeer/play with dramsim3).

B. DRAMsim3 Build Process

During trace and timing simulation, I use DRAMsim3
as shared library(libdramsim3.so) which is in ext/DRAM-
sim3(after library building). One good thing about using the
shared library is that we do not need to build every time the
sources are changed. I cloned DRAMsim3 in the ’ext’ directory
and changed DRAMsim3/src/configuration.cc to ext/configu-
ration.cc, for my convenience(to save simulation outputs with
output prefix). After the change, I built DRAMsim3 and then
libdramsim3.so came out.

10 /* DRAMsim3 headers */
11 #include <common.h>
12 #include <dramsim3.h>

- DRAMsim3 Headers -

Now, we are able to use memory systems in DRAMsim3
by adding some headers as above. The ’common.h’ includes
Transaction class which can take trace files, so the header is
needed to make a trace-based memory controller. In addition,
the ’dramsim3.h’ is a required header to create DRAMsim3’s
MemorySystem.

II. MEMORY CONTROLLER

A. Memory Controller Base Class

22 /* Memory Controller Base */
23 class mem_ctrler_base_t {
24 public:
25 mem_ctrler_base_t(const std::string& m_config_file,
26 const std::string& m_output_dir)
27 : clk(0) {
28 mem = dramsim3::GetMemorySystem(m_config_file, m_output_dir,
29 std::bind(&mem_ctrler_base_t::read_callback,
30 this, std::placeholders::_1),
31 std::bind(&mem_ctrler_base_t::write_callback,
32 this, std::placeholders::_1));
33 }
34 virtual ˜mem_ctrler_base_t() {};
35 virtual void tick() = 0;
36 virtual void read_callback(uint64_t m_addr) = 0;
37 virtual void write_callback(uint64_t m_addr) = 0;
38 void print_stats() { mem->PrintStats(); }
39
40 protected:
41 dramsim3::MemorySystem *mem;
42 uint64_t clk;
43 };

- Memory Controller Base Class -

The mem ctrler base t class is the same as CPU class
in DRAMsim3/src/cpu.h(only the class’s function and valable
names are changed). The class has MemorySystem pointer,
’mem’, which can use DRAMsim3 memory APIs in DRAM-
sim3/src/dramsim3.h. In src/main.cc, I can initiate the class’s
child classes(trace-based and timing memory controller) and
get some outputs.

https://github.com/WheatBeer/play_with_dramsim3
https://github.com/WheatBeer/play_with_dramsim3


B. Trace-based Memory Controller

45 /* Trace Memory Controller */
46 class trace_mem_ctrler_t : public mem_ctrler_base_t {
47 public:
48 trace_mem_ctrler_t(const std::string& m_config_file,
49 const std::string& m_output_dir,
50 const std::string& m_trace_file)
51 : mem_ctrler_base_t(m_config_file, m_output_dir),
52 get_next(true), trace_cnt(0), callback_cnt(0) {
53 trace_file.open(m_trace_file);
54 if(trace_file.fail()) {
55 std::cerr << "Trace file does not exist" << std::endl;
56 exit(1);
57 }
58 }
59 ˜trace_mem_ctrler_t() { mem->GetQueueSize(); trace_file.close(); }
60 void tick();
61 void read_callback(uint64_t m_addr) { callback_cnt++; return; }
62 void write_callback(uint64_t m_addr) { callback_cnt++; return; }
63 bool is_end() { return trace_file.eof() && trace_cnt == callback_cnt; }
64
65 private:
66 bool get_next;
67 size_t trace_cnt;
68 size_t callback_cnt;
69 std::ifstream trace_file;
70 dramsim3::Transaction trans;
71 };

- Trace-based Memory Controller Class -

In order to simulate trace memory requests, a trace-based
memory controller is needed. The controller is already in
DRAMsim3/src/cpu.h as TraceBaseCPU class which is in-
herited from CPU class, so users can use this by executing
’dramsim3main(executable file)’ with a flag(e.g. -t trace.txt).
However, to run this way, users have to put cycles(e.g. -c
100000) and the cycles do not guarantee the end of trace. For
instance, the simulation is finished in the cycles, but traces
may still remain. So, to track the last cycle, I made a new
trace-based memory controller, trace mem ctrler t, which
is inherited from mem ctrler base t class. The difference
between trace mem ctrler t class(new) and TraceBaseCPU
class(original) is whether the last cycle can be tracked au-
tomatically. The new trace-based memory controller has some
more functions and variables, such as is end(), trace cnt, and
callback cnt.

The way to track the last cycle is to count sending and
receiving both and compare them. When sending transactions,
trace cnt is counted and when receiving callback(read and
write), callback cnt is counted. The callback cnt is incre-
mented in the callback functions inside the controller and the
increase of trace cnt occurs at the tick(), as you can see in
the code below.

3 /* Trace Memory Controller */
4 void trace_mem_ctrler_t::tick() {
5 mem->ClockTick();
6 if(!trace_file.eof()) {
7 if(get_next) {
8 get_next = false;
9 trace_file >> trans;

10 trace_cnt++; // Here
11 }
12 if(trans.added_cycle <= clk) {
13 get_next = mem->WillAcceptTransaction(trans.addr, trans.is_write);
14 if(get_next) {
15 mem->AddTransaction(trans.addr, trans.is_write);
16 }
17 }
18 }
19 clk++;
20 return;
21 }

- Trace-based Memory Controller’s tick() -

After all trace transactions are sent and DRAMsim3’s Mem-
orySystem process the last transaction, callback cnt becomes
equal to trace cnt. The is end() function checks the end of
the trace file and if trace cnt and callback cnt are the same.

35 /* Trace Memory Controller Test */
36 trace_mem_ctrler_t *trace_mem_ctrler = new trace_mem_ctrler_t(dram_cfg_path

, output_path, trace_path);
37 while(!trace_mem_ctrler->is_end()) {
38 trace_mem_ctrler->tick();
39 }
40 trace_mem_ctrler->print_stats();
41 delete trace_mem_ctrler;

- main.cc -

In the main.cc, we can send all transactions in the trace file
to the simulator and check whether the transaction processing
is finished, using the is end().

1 $ wc -l ./traces/*
2 110272 traces/trace1.txt
3 33920 traces/trace2.txt
4 77568 traces/trace3.txt
5 30976 traces/trace4.txt
6 80128 traces/trace5.txt
7 29184 traces/trace6.txt
8 55104 traces/trace7.txt
9 96000 traces/trace8.txt

10 513152 total
11
12 $ grep -o READ trace1.txt | wc -w
13 9920
14 $ grep -o WRITE trace1.txt | wc -w
15 100352

- The number of trace transations -

There are 8 ResNet-18 traces in the traces directory.
The trace1 has 110272 transactions, of which READ trans-
actions are 9920 and WRITE transactions are 100352. In
the output of trace1 simulation below, num reads done and
num write done are the number of READ and WRITE
transactions respectively. (There is 1 count difference at
num reads done, but I don’t have enough time to debug.) With
the output, we can see that the number of cycles required to
process all transactions is 559529(num cycles).

1 ###########################################
2 ## Statistics of Channel 0
3 ###########################################
4 hbm_dual_cmds = 0 # Number of cycles dual cmds issued
5 num_read_row_hits = 9703 # Number of read row buffer hits
6 num_write_buf_hits = 0 # Number of write buffer hits
7 num_reads_done = 9921 # Number of read requests issued
8 num_writes_done = 100352 # Number of read requests issued
9 num_cycles = 559529 # Number of DRAM cycles

- Simulation Output(trace1) -

To validate my trace-based memory controller, I use the
original memory controller which name is TraceBaseCPU
in DRAMsim3/src/cpu.h. I put 559529 in cycle(-c 559529)
and simulate trace1, you can test as command below. After
simulation, dramsim3.txt which is simulation output come out
and the results are perfectly consistent with my results (even
the 1 count difference is the same).

1 $ ./dramsim3main DDR4_8Gb_x8_2400.ini -c 559529 -t trace1.txt

C. Timing Memory Controller

A downside of trace-based simulation is it cannot simulate
the real slowdown of an application, since the requests will
arrive at the designated cycle no matter what. We can create
a timing memory controller which has a fixed number of load
buffer. In this report, I only describe how to make the timing
memory controller and how the controller works with infinite
buffer.



73 /* Timing Memory Controller */
74 class timing_mem_ctrler_t : public mem_ctrler_base_t {
75 public:
76 timing_mem_ctrler_t(const std::string& m_config_file,
77 const std::string& m_output_dir)
78 : mem_ctrler_base_t(m_config_file, m_output_dir),
79 send_cnt(0), callback_cnt(0) {}
80 ˜timing_mem_ctrler_t() {}
81 void tick() { mem->ClockTick(); clk++; return; }
82 bool will_accept_transaction(uint64_t addr_, bool is_write_) const;
83 void add_transaction(uint64_t addr_, bool is_write_);
84 void read_callback(uint64_t m_addr);
85 void write_callback(uint64_t m_addr);
86 bool is_end() { return send_cnt == callback_cnt && queue.size() == 0; }
87
88 private:
89 size_t send_cnt;
90 size_t callback_cnt;
91 std::list<mem_request_t> queue;
92 };

- Timing Memory Controller Class -

23 /* Timing Memory Controller */
24 bool timing_mem_ctrler_t::will_accept_transaction(uint64_t addr_, bool is_write_)
25 const {
26 return mem->WillAcceptTransaction(addr_, is_write_);
27 }
28
29 void timing_mem_ctrler_t::add_transaction(uint64_t addr_, bool is_write_) {
30 mem->AddTransaction(addr_, is_write_);
31 mem_request_t mem_request(addr_, is_write_);
32 queue.push_back(mem_request);
33 send_cnt++;
34 return;
35 }
36
37 void timing_mem_ctrler_t::read_callback(uint64_t m_addr) {
38 for(auto it = queue.cbegin(); it != queue.cend(); ++it) {
39 if(it->addr == m_addr) {
40 callback_cnt++;
41 queue.erase(it);
42 return;
43 }
44 }
45 }
46
47 void timing_mem_ctrler_t::write_callback(uint64_t m_addr) {
48 for(auto it = queue.cbegin(); it != queue.cend(); ++it) {
49 if(it->addr == m_addr) {
50 callback_cnt++;
51 queue.erase(it);
52 return;
53 }
54 }
55 }

- Timing Memory Controller’s Functions -

The above memory controller, timing mem ctrler t, has
wrapper functions which include memory system func-
tions in ext/DRAMsim3/src/dramsim3.h. In the trace-based
memory controller, WillAcceptTransaction() and AddTrans-
action(), which are memory system functions, are used
inside the tick(). You can take this method in timing
simulation. Another way is to wrap these functions with
will accept transaction and add transaction respectively and
use them outside the controller. For example, in your tim-
ing simulator, will accept transaction should be called first
to check whether DRAMsim3 can receive transactions. If
DRAMsim3 can accept the transactions, you can send memory
requests through add transaction. Next, you have to run tick()
for processing the transactions in DRAMsim3. The difference
between these two methods is to schedule memory requests
inside or outside the controller(I am currently looking for a
suitable method in my research).

14 /* Memory Request Structure */
15 struct mem_request_t {
16 mem_request_t(uint64_t m_addr, bool m_is_write)
17 : is_write(m_is_write), addr(m_addr) {}
18 bool is_write;
19 uint64_t addr;
20 };

- Memory Request Structure -

DRAM Configs On-chip Configs

DRAMsim3

…PU PU PU PU

Scheduler

Memory Controller

: External Libraries : On-chip Components : S/W parts : Configurations 

Off-chip
On-chip

Application

Fig. 1: Timing Simulation Example

The timing mem ctrler t has a queue which can contain
memory requests(mem request t). The queue size can be fixed
as needed.

To reduce description in the last section(gem5 with DRAM-
sim3) and explain how the timing mem ctrler t works, I
use Fig.1 as an example. When application is launched,
PUs(Processing Units) send memory requests to the memory
controller. If the memory controller queue has enough space,
the memory requests are accepted and send to DRAMsim3. If
not, the PU is stalled until queue can take the requests. After
DRAMsim3 processing, the memory controller receive pro-
cessed address through callback functions. With the callback
functions, memory controller should send data or message to
PUs. In gem5, there can be various combinations of CPU and
caches by configuration scripts.

III. DRAM SCHEDULER

A. FCFS vs FR-FCFS
DRAMsim3 follows FR-FCFS(first-ready-first-come-first-

serve) policy according to its github(https://github.com/
umd-memsys/DRAMsim3). I change the policy to FCFS as
follows.

178 Command CommandQueue::GetFirstReadyInQueue(CMDQueue& queue) const {
179 for (auto cmd_it = queue.begin(); cmd_it != queue.end(); cmd_it++) {
180 Command cmd = channel_state_.GetReadyCommand(*cmd_it, clk_);
181 if (!cmd.IsValid()) {
182 continue;
183 }
184 /*if (cmd.cmd_type == CommandType::PRECHARGE) {
185 if (!ArbitratePrecharge(cmd_it, queue)) {
186 continue;
187 }
188 } else */ if (cmd.IsWrite()) {
189 if (HasRWDependency(cmd_it, queue)) {
190 continue;
191 }
192 }
193 return cmd;
194 }
195 return Command();
196 }

- FR-FCFS to FCFS -

DRAMsim3 memory system has two types of queue: trans-
action queue and bank command queue. The default value of
transaction queue size is 32 and each bank has 8 command
queue size. From transaction queue to bank command queue,
FCFS policy is applied. After commands sent to command
queue, row-hit commands are served first following FR-FCFS.

https://github.com/umd-memsys/DRAMsim3
https://github.com/umd-memsys/DRAMsim3


trace1 trace2 trace3 trace4
READ Transactions 9920 1152 52480 18432
WRITE Transactions 100352 32768 25088 12544
Total Transactions 110272 33920 77568 30976

(1) FR-FCFS
a. num_read_row_hits 9703 1142 51910 18156
b. num_write_row_hits 95949 30667 24860 12430

c. num_act_cmds 4636 2096 798 392
d. num_pre_cmds 4607 2080 790 381

(2) FCFS
a. num_read_row_hits 9697 1142 51910 18088
b. num_write_row_hits 95944 30666 24858 12429

c. num_act_cmds 4769 2103 805 521
d. num_pre_cmds 4740 2087 799 510

(1) - (2)
a. num_read_row_hits 6 0 0 68
b. num_write_row_hits 5 1 2 1

c. num_act_cmds -133 -7 -7 -129
d. num_pre_cmds -133 -7 -9 -129

Fig. 2: Simulation Results(FR-FCFS vs FCFS)

B. Simulation Results and Analysis

I simulate ResNet-18 trace1-4 changing scheduling policy.
Fig. 2 is results of the simulation. The yellow box shows the
subtracted values from FR-FCFS to FCFS. In most cases, row-
hit ratio is higher when FR-FCFS scheduler is used than FCFS.
Since the traces have their own charateristics, the outputs are
different for each trace.

IV. GEM5 WITH DRAMSIM2

A. Application Description

7 int main()
8 {
9 cout << "Loop Unrolling Test(Original)!" << endl;

10 layer_t alex_conv_1(227, 227, 3, 11, 11, 96, 4, 1);
11 layer_t &layer = alex_conv_1;
12
13 cout << "Convolutional Layer Execution Start!" << endl;
14 for(unsigned k = 0; k < layer.K; k++) {
15 for(unsigned oh = 0; oh < layer.OH; oh++) {
16 for(unsigned ow = 0; ow < layer.OW; ow++) {
17 for(unsigned c = 0; c < layer.C; c++) {
18 for(unsigned r = 0; r < layer.R; r++) {
19 for(unsigned s = 0; s < layer.S; s++) {
20 unsigned h = oh * layer.stride + r;
21 unsigned w = ow * layer.stride + s;
22 *layer.output(ow,oh,k)+=layer.input(w,h,c)*layer.filter(s,r,c,k);
23 }
24 }
25 }
26 }
27 }
28 }
29 cout << "Convolutional Layer Execution Finish!" << endl;
30 return 0;
31 }

- AlexNet Conv1 Layer(Original) -

15 cout << "Convolutional Layer Execution Start!" << endl;
16 for(unsigned k = 0; k < layer.K; k++) {
17 for(unsigned oh = 0; oh < layer.OH; oh++) {
18 for(unsigned ow = 0; ow < layer.OW; ow++) {
19 for(unsigned c = 0; c < layer.C; c++) {
20 for(unsigned r = 0; r < layer.R; r ++) {
21 for(unsigned s = 0; s < layer.S; s += 4) {
22 unsigned h = oh * layer.stride + r;
23 unsigned w = ow * layer.stride + s;
24 *layer.output(ow,oh,k)+=layer.input(w,h,c)*layer.filter(s+0,r,c,k);
25 *layer.output(ow,oh,k)+=layer.input(w,h,c)*layer.filter(s+1,r,c,k);
26 *layer.output(ow,oh,k)+=layer.input(w,h,c)*layer.filter(s+2,r,c,k);
27 *layer.output(ow,oh,k)+=layer.input(w,h,c)*layer.filter(s+3,r,c,k);
28 }
29 }
30 }
31 }
32 }
33 }

- AlexNet Conv1 Layer(Unrolled) -

Original Unrolled
sim_seconds 40.49874 > 39.35633 # Number of seconds simulated

sim_ticks 40,498,700,000,000 > 39,356,330,693,500 # Number of ticks simulated

system.mem_ctrls.bw_read::cpu0.inst 1,381 < 1,431 # Total read bandwidth from this memory (bytes/s)

system.mem_ctrls.bw_read::cpu0.data 1,542,780 < 1,587,772 # Total read bandwidth from this memory (bytes/s)

system.mem_ctrls.bw_read::total 1,544,161 < 1,589,203 # Total read bandwidth from this memory (bytes/s)

system.mem_ctrls.bw_inst_read::cpu0.inst 1,381 < 1,431 # Instruction read bandwidth from this memory (bytes/s)

system.mem_ctrls.bw_inst_read::total 1,381 < 1,431 # Instruction read bandwidth from this memory (bytes/s)

system.mem_ctrls.bw_write::writebacks 76,387 < 78,604 # Write bandwidth from this memory (bytes/s)

system.mem_ctrls.bw_write::total 76,387 < 78,604 # Write bandwidth from this memory (bytes/s)

system.mem_ctrls.bw_total::writebacks 76,387 < 78,604 # Total bandwidth to/from this memory (bytes/s)

system.mem_ctrls.bw_total::cpu0.inst 1,381 < 1,431 # Total bandwidth to/from this memory (bytes/s)

system.mem_ctrls.bw_total::cpu0.data 1,542,780 < 1,587,772 # Total bandwidth to/from this memory (bytes/s)

system.mem_ctrls.bw_total::total 1,620,548 < 1,667,808 # Total bandwidth to/from this memory (bytes/s)

system.cpu0.dtb.rdAccesses 11,461,623,462 > 11,337,041,862 # TLB accesses on read requests

system.cpu0.dtb.wrAccesses 2,973,804,875 < 2,983,388,075 # TLB accesses on write requests

system.cpu0.dtb.rdMisses 14,866 = 14,867 # TLB misses on read requests

system.cpu0.dtb.wrMisses 486 = 486 # TLB misses on write requests

Fig. 3: Simulation Results(Original vs Unrolled)

I use the first convolutional layer in AlexNet and com-
pare this with an unrolled version. The original has 6 for-
loop and each loop is increased by 1. On the other hand,
the unrolled version’s inner most loop is counted by 4(S:
filters’ width). Because of this, the unrolled version have 4
multiplication operations. The applications run on gem5 8
TimingSimpleCPU(X86) cores with command below.

1 build/X86/gem5.opt configs/example/se.py \
2 --cmd=${EXE_FILE_PATH} \
3 --cpu-type=TimingSimpleCPU --num-cpu=8 \
4 --caches --l2cache \
5 --num-l2caches=8 --l1d_size=32kB --l1i_size=32kB --l2_size=512kB \
6 --mem-type=DRAMSim2 \

- gem5 Command Line -

B. Simulation Results and Analysis

Fig. 3 is results of the simulation. As expected, the unrolled
test is finished faster than the original. The reason of the
difference of cycles is that the unrolled loop encounters branch
instructions less than original. At the system.mem ctrls.bw
parts in the results, all the unrolled outputs are larger than
the original’s. Since the requests are almost same for both and
the the unrolled test’s taken time is shorter than original’s, the
unrolled version memory bandwidth numbers are larger than
original’s.

V. CONCLUSION

I tried to attach DRAMsim3 to gem5,
however, some problems came out. At dram-
sim3::BaseDRAMSystem::ResetStats(), which resets output
stats, segmentation fault signal is detected. After fixing this,
dramsim3::MemorySystem::ClockTick() problem occured.
Since I don’t have enough time to debug this, I decided to
use DRAMsim2 which is more stable than DRAMsim3. While
working on this project, I was able to learn how DRAM
works and how hardware simulators work. In my future work,
what I have learned from this project will be helpful a lot.

REFERENCES

[1] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp. 1–7, 2011.

[2] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “Dramsim3: a
cycle-accurate, thermal-capable dram simulator,” IEEE Computer Archi-
tecture Letters, 2020.


	Introduction
	Overview of Project Sources
	DRAMsim3 Build Process

	Memory Controller
	Memory Controller Base Class
	Trace-based Memory Controller
	Timing Memory Controller

	DRAM Scheduler
	FCFS vs FR-FCFS
	Simulation Results and Analysis

	Gem5 with DRAMsim2
	Application Description
	Simulation Results and Analysis

	Conclusion
	References

